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ON MAÑÉ’S LAST CONJECTURE

DANIEL MASSART

Abstract. It is not C4-generic for Lagrangians to have a minimising
periodic orbit.

1. Introduction

Let M be a smooth, closed, connected manifold and L be a Lagrangian
on the tangent bundle TM , that is, a Cr, r ≥ 2 function on TM which is
convex and superlinear when restricted to any fiber. The Euler-Lagrange
equation then defines a complete flow Φt on TM . See [Fa00] and [Mr91] for
background and reference.

CallM the set of compactly supported, Φt-invariant probability measures
on TM . The objects under scrutiny here are the measures-henceforth called
minimising-that minimise the L-action, that is, the integral

∫
TM (L)dµ, over

M.
We say a property is true for a generic Lagrangian if, given a Lagrangian

L, there exists a residual (countable intersection of open and dense subsets)
subset O of C∞(M) such that the property holds for L+ f,∀f ∈ O. Mañé
([Mn96]) proved for a generic Lagrangian, there exists a unique minimising
measure and in [Mn97] (see also [CDI97]) he made the following

Conjecture 1. For a generic Lagrangian, there exists a unique minimising
measure and it is supported on a periodic orbit.

Given a Lagrangian L, denote OL the set of f ∈ C∞(M) such that L+ f
has a unique minimising measure, supported on a periodic orbit. To our
dismay we are going to disprove the conjecture by proving this

Theorem 2. There exists a Lagrangian L on the two-torus such that the
set OL is not dense in the C4-topology.

Our Lagrangian is just a flat metric plus a constant 1-form with the
ratio of its coefficients irrational and quadratic. The idea is then to use the
Diophantine approximation properties of the ratio.

See [Mn96], Problem IV for a slightly weaker conjecture and [Mt02] for a
proof thereof when M is a closed, orientable surface.

2. Preliminaries

2.1. Globally minimising orbits. Given a C1 curve γ defined on some
compact interval I into M , the L-action of γ is the integral

∫
I L(γ, γ̇)ds.

The curve γ is said to be minimising if it minimises the L-action over all
C1 curves defined over the same interval, with the same endpoints. A C1
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curve γ : R −→M is said to be minimising if its restriction to any compact
interval is. An orbit γ : R −→ TM is said to be minimising if its projection
to M is. We denote by G(L) the union in TM of all minimising orbits. Note
that the support of a minimising measure is always contained in G(L)(see
[Fa00]).

We choose an auxiliary Riemann metric on M and denote by dTM the
associated distance function on TM .

Proposition 3. The set G(L) is upper semi-continuous with respect to the
Lagrangian.

Proof. Here the topology on the G’s is the Hausdorff topology on compact
sets, and the topology on Lagrangians is that induced by uniform conver-
gence on compact sets of the Lagrangian and its derivatives up to second
order. Then convergence of the Lagrangian ensures uniform convergence of
the time t map of the flow.

Let Ln be a sequence of Lagrangians converging to some L and denote
by φnt the associated flow on TM . First note that by a priori Compactness
([Fa00], Corollary 4.1.2) the sets G(Ln) remain in a bounded region K of
TM . So all we have to show is that if a subsequence of the sets G(Ln)
converges, in the Hausdorff topology, to some Λ, then Λ consists of orbits of
Φt, and those orbits are minimising.

Assume Λ is not Φt-invariant. Then there exists a point (x, v) in Λ and
t ∈ R such that ε := dTM (Λ, φt(x, v)) > 0. Choose δ such that

dTM ((x, v), (y, w)) ≤ δ implies dTM (φs(x, v), φns (y, w)) ≤ ε/3 ∀s ∈ [0, t].

Let N be such that dTM (Λ,Gn) ≤ min(δ, ε/3) for all n ≥ N . Take (xN , vN )
in GN such that dTM ((x, v), (xN , vN )) ≤ δ. Then by definition of δ we have
dTM (φt(x, v), φNt (xN , vN )) ≤ ε/3 which implies , GN being ΦN

t -invariant,
dTM (GN , φt(x, v)) ≤ ε/3. Then since dTM (Λ,GN ) ≤ ε/3 we have

dTM (Λ, φt(x, v)) ≤ 2ε/3 < ε,

a contradiction.
Assume an orbit δ in Λ is not minimising. Then there exists s, t ∈ R,

ε > 0 and a C1 curve γ : [s, t] −→M such that γ(s) = δ(s), γ(t) = δ(t) and∫ t

s
L(γ(τ), γ̇(τ))dτ + ε ≤

∫ t

s
L(δ(τ), δ̇(τ))dτ.

Let N1 be such that

|Ln(x, v)− L(x, v))| ≤ ε

6|t− s|
∀n ≥ N1, (x, v) ∈ K

and let α be such that

|L(x, v)− L(y, w))| ≤ ε

6|t− s|
∀(x, v), (y, w) ∈ K, dTM ((x, v), (y, w)) ≤ α.

There exists N2 such that dTM (Λ,Gn) ≤ α for all n ≥ N2. Then there exists
n ≥ max(N1, N2) and an orbit δn in Gn such that dTM (δn(τ), δ(τ)) ≤ α
for all τ ∈ [s, t]. By adding short segments at the ends of γ([s, t]) and
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reparametrising we construct a curve γn : [s, t] −→ M such that γn(s) =
δn(s), γn(t) = δn(t). Posibly taking a larger n, we may assume that∫ t

s
Ln(γn(τ), γ̇n(τ))dτ ≤

∫ t

s
L(γ(τ), γ̇(τ))dτ +

ε

3
.

Then we have∫ t

s
Ln(δn(τ), δ̇n(τ))dτ ≥

∫ t

s
Ln(δ(τ), δ̇(τ))dτ − ε

6

≥
∫ t

s
L(δ(τ), δ̇(τ))dτ − ε

3

≥
∫ t

s
L(γ(τ), γ̇(τ))dτ +

2ε
3

≥
∫ t

s
Ln(γn(τ), γ̇n(τ))dτ +

ε

3

which is impossible since all orbits in Gn are minimising.

2.2. The Lagrangian. Let T2 = (R/Z)2 be the standard two-torus, let
(x, y, u, v) be coordinates in TT2 = T

2 × R2, and let r be a quadratic irra-
tional real number. Let p, q be real numbers such that p/q = r and p2 +q2 =
1. Let ω be the closed one-form on T2 defined by ω(x,y)(u, v) = pu + qv.
Now let L be the Lagrangian on T2 defined by

L(x, y, u, v) =
1
2

(u2 + v2)− ω(x,y)(u, v).

Since the one-form ω is closed, the orbits of the Euler-Lagrange flow of L
are geodesics parametrized with constant speed.

Lemma 4. The critical value of the Lagrangian L is 1/2.

Proof. Let us prove that c(L) ≤ 1/2, that is,
∫
Ldµ ≥ −1/2 for all µ ∈ M.

Since every invariant measure is a convex combination of ergodic measures,
it is enough to prove it when µ is ergodic. For such a µ there exists a geodesic
with velocity (u, v) such that∫

Ldµ = lim
T→∞

1
T

∫ T

0
(
1
2

(u2 + v2)− pu− qv)dt =
1
2

(u2 + v2)− pu− qv.

Now since p2 + q2 = 1 we have pu+ qv ≤
√
u2 + v2 so

(1/2)(u2 + v2)− pu− qv ≥ −1/2.

Let us prove that c(L) ≥ 1/2. Consider the probability measure µ in TT2

evenly distributed on the torus

{(x, y, u, v) : u2 + v2 = 1, pu+ qv = 1} = {(x, y, p, q) : (x, y) ∈ T2}.

We have
∫
Ldµ = −1/2 so c(L) = 1/2 and µ is minimising.

If f is a function on T2, it may be viewed as a function on TT2 by setting
f(x, v) = f(x). Then by the Riesz Representation Theorem the map that
takes any continuous function f on M to

∫
TT2 fdµ may be represented by

a Borel probablity measure Λ on M . Since µ is invariant under the Euler
Lagrange flow of L, the measure Λ is invariant under the translation by
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(p, q). This translation is ergodic since p/q is irrational so Λ is the normalised
Lebesgue measure on T2.

Lemma 5. For the Lagrangian L we have G(L) = supp(µ).

Proof. This amount to showing that if (γ, γ̇) is a minimising orbit, we have
γ̇(t) = (p, q) for all t. Note that an orbit is a geodesic of a flat metric so it has
constant velocity. Let (p1, q1) be that velocity and 1/2(p2

1+q2
1)+pp1+qq1 :=

ε > 0. Then we have
∫ t

0 (L+ c(L))(γ, γ̇)ds = tε so for t large enough we may
connect a long segment of an orbit of velocity (p, q) with a short geodesic
segment to get a curve with the same endpoints as γ([0, t]), same parameter
interval and smaller action, showing that γ is not minimising.

Now assume there exists a sequence of C2 functions fn on T2, and closed
curves γn : [0, Tn] −→ T

2 such that the uniformly distributed probablility
measure µn on the set (γn, γ̇n)([0, Tn]) in TT2 is L + fn-minimising. Then
in particular∫

TT2

(L+ fn)dµn ≤
∫
TT2

(L+ fn)dµ = −c(L) +
∫
T2

fndΛ so

∫
TT2

(L+ c(L))dµn ≤
∫
T2

fndΛ−
∫
fndµn.(1)

2.3. Evaluation of the left-hand side in Equation 1. Let Z2 be iden-
tified with H1(T2,Z). Let (pn, qn) be the homology class of γn. The left-
hand side of Equation 1 is minimal when γn is a geodesic of the flat metric
‖(u, v)‖ =

√
u2 + v2 parametrised with energy c(L), or unit speed. Such a

geodesic is given by

γn : [0,
√
p2
n + q2

n] −→ T
2

t 7→ t√
p2
n+q2

n

(pn, qn)modZ2

Let rn be pn/qn and εn be |rn − r|. Since pn, qn are integers and r = p/q
is a quadratic irrational number, there exists a constant C1 > 0 such that
εn ≥ C1/q

2
n. Then∫

TT2

(L+ c(L))dµn =
1√

p2
n + q2

n

∫ √p2
n+q2

n

0

(
1
2
− ppn + qqn√

p2
n + q2

n

+
1
2

)
dt

= 1− ppn + qqn√
p2
n + q2

n

= q
√

1 + r2 − rqrnqn + qqn√
r2
nq

2
n + q2

n

= q

√
1 + r2

√
1 + r2

n − (1 + rrn)√
1 + r2

√
1 + r2

n

= q

√
1 + r2

√
1 + (r + εn)2 − (1 + r(r + εn)√
1 + r2

√
1 + (r + εn)2

= C3ε
2
n + o(ε2n) ≥ C2

q4
n

for some positive constants C2, C3.
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2.4. Foliation of R2 by translates of lifts of γn.

Lemma 6. Let γ : [0, T ] −→ T
2 be a C1 simple closed curve. If there exists

a direction v ∈ R2 such that γ̇(t) 6∈ Rv for all t in [0, T ], then R2 is foliated
by translates of a given lift of γ in the direction v.

Proof. Lift the situation to the universal cover R2 of T2, choose a lift of γ
and denote it γ. All we have to prove is that γ+s1v and γ+s2v are disjoint
or equal for all s1, s2 ∈ R. Assume for some s1, s2 ∈ R, t1, t2 ∈ [0, T ], we
have γ(t1) + s1v = γ(t2) + s2v. Then γ(t1)−γ(t2) = (s2− s1)v so if s1 6= s2,
by Rolle’s theorem there exists t3 ∈ [t1, t2] such that γ̇(t3) is colinear to
v.

Now let us prove that for n large enough, γn satisfies the sufficient con-
dition of the lemma. By lower semicontinuity of G, we see that any limit
point of supp(µn), in the Hausdorff topology on compact subsets of TT2,
is contained in G(L) = supp(µ). Hence the velocity vectors of γn converge
uniformly to (p, q) so for large n the direction of the tangent vector ∂/∂y is
missed by γ̇n for all t ∈ [0, Tn].

3. Proof of Theorem 2

From now on we work in R2, still denoting fn the composition fn ◦ π,
where π is the projection of the universal cover of T2. So fn is now a Z2-
periodic function and its mean value on R2 is well-defined. The mean value
of fn on γn and its translates is also well-defined since fn is periodic on γn
and its translates.

Define on the line {x = 0} the function φn(y) as the mean value of fn
on the leaf of the foliation going through y. Then φn is Ck if fn is Ck and
φ

(k)
n (y) is the mean value of ∂(k)fn/∂y

(k) on the leaf of the foliation going
through y, that is

∀k ∈ N, φ(k)
n (y) =

1
Tn

∫ Tn

0

∂kfn
∂yk

(x, y)dx.

Note that the C4-norm of fn is greater than or equal to that of φn. Indeed
so if for some y we have φ(4)

n (y) ≥ K for some K, then there exists x such
that ∂kfn/∂yk(x, y) ≥ K. Besides the mean value of φn over {x = 0} equals
the mean value of fn over T2. Since φn is 1-periodic and C∞, for any k, φ(k)

n

vanishes at least once in [0, 1].
Assume for definiteness that γn crosses {x = 0} at y = 0. Since γn is

minimising in particular it minimises among its translates so we may assume,
up to adding a constant, that φn ≥ 0 = φn(0). Since γn crosses {x = 0} qn
times, there exists at least one interval in {x = 0} of length an ≤ 1/qn which
is crossed exactly once by all leaves of the foliation. Assume for simplicity
that this interval is [0, an]. So every value of φn and its derivatives is taken
at least once in [0, an]. Thus for every k in N, there exists xk in [0, an] such
that φ(k)

n (xk) = 0.
The following Proposition shows that φn, hence fn, does not go to zero

in the C4-topology.

Proposition 7. For all k in N, there exists yk in [0, an] such that φ(k)
n (yk) ≥

C2q
k−4
n .
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Proof. By induction : for k = 0, Equation 1 and the Mean Value Theorem
yield existence of an y0 in [0, 1] such that φn(y0) ≥ C2/q

4
n. Then, every value

of φn being achieved in [0, an], we may assume y0 ∈ [0, an].
Now assume we have proved the Proposition up to some k. Then by the

Fundamental Theorem of Calculus we have

φ(k)
n (yk) = |φ(k)

n (yk)− φ(k)
n (xk)| ≤ sup

x∈[0,1]
|φ(k)
n (x)|.|yk − xk|

≤ sup
x∈[0,1]

|φ(k)
n (x)| 1

qn

so there exists yk+1 ∈ [0, 1] such that φ′n(yk+1) ≥ C2q
k−4+1
n and as previously

we may assume yk+1 ∈ [0, an].
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